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U s e  ~ - _ _ - -  of the Method of Particular Solutions 

In Nonlinear, Two- Point Boundary- Value Problems 

Part 1 - Uncontrolled Svstems 

-- -- 
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JOHN c.  HEIDEMA? 

Abstract. Several nonlinear, two-point boundary value problems are considered 

in this report. First, quasilinearization techniques are employed and the system of 

nonlinear equations is replaced by one that is linear. Then, the method of particular 

solutions is employed in order to solve the linear problem. The procedure is 

employed iteratively, and it is shown to converge rapidly to the desired solution in 

the following typical cases : (a) the Blasius equation of boundary-layer theory, 

(b) the Falkner-Skan equation of boundary-layer theory, and (c) a particular fifth- 

order system. 
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1 .  Introduction - 

In Ref. 1, Miele developed the method of particular solutions for solving linear, 

two-point boundary-value problems. He treated a system of order n, subjected t o  

p initial conditions and q final conditions, with p + q = n. He proved that q + 1 

particular solutions of the original, nonhomogeneous system satisfying the initial 

conditions but not the final conditions can be combined linearly so as to satisfy 

simultaneously the original, nonhomogeneous system and the initial conditions, providing 

the sum of the constants of the  linear combination is one. This relation and the q 

prescribed final conditions constitute a system of q + 1 linear algebraic equations 

in the q + 1 unknown constants. 

As mentioned by Miele in Ref. 1,  the method of particular solutions can also 

be used to solve nonlinear, two-point boundary-value problems. First, quasilinearization 

techniques must be employed and the nonlinear system must be replaced by one that 

is linear in the perturbations about a nominal curve (see, for example, Ref. 2).  To 

this linear system, Miele’s method can be applied t o  find the perturbations leading 

to a new nominal curve. Then, the procedure is employed iteratively. 

To illustrate the versatility of the method described in Ref. 1,  the following 

nonlinear problems are treated: (a) the Blasius equation of boundary-layer theory, 

(b) the Falkner-Skan equation of boundary-layer theory, and (c) a particular fifth-order 

system. W e  note that, for  comparison purposes, power- series solutions are 

available for Cases (a) and (b) and an analytical solution is available for  Case (c). 

W e  also note that Systems (a ), (b), (c) are uncontrolled: their behavior is fully 

determined if  a complete set of initial conditions is specified. 
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2 .  Blasius Equation - 
For the laminar, incompressible boundary layer over a flat plate, the velocity 

profile is governed by the Blasius equation (Ref. 3) 

2 Y + x j t  = o  

for which the boundary conditions are 

x(0) = i ( 0 )  = 0, 2(a) = 1 

In Eq. (l), the independent variable t is proportional to  the distance from the flat 

plate and the dependent variable x is such that its derivative f is proportional to the 

velocity. 

After the auxiliary variables y, z defined by 

% - y = O ,  j T - z = o  

are introduced, Eq. (1) can be rewritten as 

2i +xz = o  (4) 

3 
and the boundary conditions (2) become 

x(0) = y(0) = 0, y(10) = 1 (5) 

Therefore, the problem of solving the Blasius equation consists of finding the functions 

x(t), y(t), z(t) which solve the nonlinear system (3)-(4) subject to the  boundary 

----- 
For computational purposes, the boundary condition at t = 8 is replaced by a 
boundary condition at t = 10. 

3 



4 AAR- 50 I 
conditions (5). Note that the auxiliary variable y is proportional to  the velocity. 

As  a first step, Eqs . (3)-(4) are linearized about a nominal curve x,(t), y,(t), 

z,(t) which is not a solution of (3)-(4) but satisfies the boundary conditions ( 5 ) .  The 

linearization leads to the perturbation equations 

6 i  - 6y + (X - y), = 0 

69  - 62 + (9 - z)* = 0 

265 +z*6x +x*6z + (22 +xz)* = 0 

which are subject to the boundary conditions 

In Eqs . (6)-(7), the symbols 6x, by, 6z denote the perturbations of x ,  y, z at a constant 

station t, that is, 

6x = x(t) - x*(t) 

6Y = Y(t) - Y , W  

62 = z(t) - z*(t) 

Having linearized the third-order system corresponding to the Blasius equation, 

we now apply the method of particular solutions. Since p = 2, q = 1, a forward 

integration is desirable. Since q + 1 = 2, two particular solutions are required and 

are designated with the subscripts 1,  2, respectively. In the first integration, we 

employ the initial conditions 
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and obtain the functions 

5 

6X1(O) = 6y1(0) = 0, 6Z1(O) = 1 

6x1(t), 6Yl(t), 6 Z l W  

In the second integration, we employ the initial conditions 

6X2(O) = 6y2(0) = 0, 6z2(0) = 2 

and obtain the functions 

As shown in Ref. 1 ,  the linear combinations 

6x = k 6x + k 6x 1 1 . 2  2 
* 

6y = k 6y t k 6y 1 1  2 2  

6z = k 6z + k 6z 1 1  2 2  

satisfy the differential system (6 )  and the initial conditions (7-1)-(7-2) provided 

k + k  = 1  1 2  

and the final condition (7-3) provided 

(9) I 

(13) I 

k16y1(10) + k26y2(10) = 0 
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If the constants kl, k are consistent with (14)-(lS), then the linear combinations (13) 

are the desired solutions to (6). Once the perturbation functions are known, the 

approximate trajectory of the system is given by 

2 

x = x *  + 6x 

Y = Y* + 6Y 

z = z *  + 6z 

and, in this way, the first iteration is completed. Next, the functions x(t), y(t), z(t) 

given by Eqs. (16) are employed as the nominal functions for the second iteration, 

and the procedure is repeated. 

Computations were performed with an IBM 7040 computer. The following 

nominal curve was chosen for the first iteration: 

x, = t 2 /10 - t 3 /300 

2 y, = t/5 - t /loo 

Z ,  = 1/5 - t/50 

At the terminal points, Eqs. (17) yield 

X,(O) = Y*(O) = 0 ,  Y*(W = 1 

and, hence, the boundary conditions (5) are satisfied by the nominal curve. 

I 
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Convergence was rapid. For instance, at station t = 4, no change occurred in the 

5th significant figure after four iterations. The results are plotted in Figs. 1-3, 

in which the symbol n denotes the iteration number. Therefore, n = 0 is the zeroth 

iteration [the nominal curve (17)1, n = 1 is the first iteration, n = 2 is the second 

iteration, and n = 3 is the third iteration. The curve n = 4 is so close to the curve 

n = 3 that the relative differexes cannot be detected in file seak of Figs. 1 - 3 .  
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3 .  Falkner-Skan Equation 

For  the laminar, incompressible boundary layer over a double wedge of included 

angle ITB, the velocity profile is governed by the Falkner-Skan equation (Ref. 3) 

.2 2'C+Xji+ B(1 - x ) = 0 

for  which the boundary conditions are 

x(0) = X(0) = 0 ,  i ( m )  = 1 

After the  auxiliary variables y, z defined by Eqs. (3) are introduced, Eq. (19) 

can be rewritten as 

2 22 +xz + B ( l  - y ) = o  

and the boundary conditions (20) reduce t o  (5). Therefore, the problem of solving 

the Falkner-Skan equation consists of finding the functions x(t), y(t), z(t) which solve 

Eqs . (3) and (21) subject to the boundary conditions (5). 

W e  linearize Eqs . (3) and (21) about a nominal curve x,(t), y,(t), z,(t) which 

is not a solution of (3) and (21) but satisfies the boundary conditions (5). W e  obtain 

the perturbation equations 
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which a r e  subject to the boundary conditions (7). 

Having linearized the third-order system corresponding to the Falkner-Skan 

equation, we now apply the method of particular solutions. As with the Blasius 

equation, only two particular solutions are needed. The first particular solution 

(10) is obtained by integrating Eqs . (22) forward with the initial conditions (9). The 

second particular soht ion (12) is obtained by integrating Eqs . (22) farward with the 

initial conditions (11). Then, these particular solutions are combined as in Eq. (13) 

to give the desired solution to Eqs. (22); once more, the constants kl, k2 must 

satisfy Eqs . (14)-(15). Once the perturbation functions are known, the approximate 

trajectory of the system is given by Eqs. (16) and, in this way, the first iteration 

is completed. Next, the functions x(t), y(t), z(t) given by Eqs. (16) are employed 

as the nominal functions for the second iteration, and the procedure is repeated. 

Computations were performed with an IBM 7040 computer for 8 = 1, corresponding 

to stagnation flow. The nominal curve (17) satisfying the boundary conditions (18) 

was  chosen for the first iteration. Once more, convergence was rapid. For instance, 

at station t = 4, no change occurred in the 4th sigmficant figure after four iterations. 

The results are plotted in Figs. 4-6, which give the nominal functions (17) as well as 

the functions ohtained after the first, second, and third iteration. The curve n = 4 

is not plotted: it is so  close to the curve n = 3 that the relative differences cannot 

be detected in the scale of Figs. 4-6. 
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4. -- Particular Fifth- Order System 

In this section, we consider the following nonlinear fifth-order system: 

i - y = o  

$ - z = o  

2 5 + z uv/6 = 0 

l i - v = o  

+ + y v  /2 = o  3 

subject to the boundary conditions 

Once more, we linearize Fqs . (23) about a nominal curve x,(t), y,(t), z,(t), 

u,(t), v,(t) which is not a solution of (23) but satisfies the boundary conditions (24). 

The linearization leads to  the perturbation equations 

6fi - 6~ + (fi - v)+ = 0 

6ir + (v 3 /2)*6y + (3yv 2 /2)*6v + (ir + yv 3 /a* = 0 

which are subject to the boundary conditions 

6x(1) = 6u(l) = 6v(l) = 0, 6x(2) = 6u(2) = 0 (26) 
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In Eqs. (25)-(26), the symbols 6x, 6y, 6z, 6u, 6v denote the perturbations of 

x,y, z , u , v  at a constant station t, that is, 

6x = x(t) - x*(t) 

6Y = Y(t) - Y&) 

62 = z(t) - z*(t) 

6u = u(t) - u*(t) 

6v = v(t) - v*(t) 

AAR- 50 

Having linearized the above fifth-order system, we now apply the method of 

particular solutions. Since p = 3, q = 2, a forward integration is desirable. Since 

q + 1 = 3 ,  three particular solutions are  required and are designated with the subscripts 

1 ,2 ,3 ,  respectively. In the first integration, we employ the initial conditions 

6x 1 (1) = 6u 1 (1) = 6v 1 (1) = 0, 6y1(l) = 2, 6z1(1) = 0 (28) 

and obtain the functions 

6x1(t), 6Yl(t), 6Z,(t), 6Ul(t), 6Vl(t) (2 9) 

In the second integration, we employ the initial conditions 

6x2(1) = bu2(l) = 6v (1) = 0, 6y (1) = 1, 6z (1) = 1 2 2 2 

and obtain the functions 
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And, in the third integration, we employ the initial conditions 

6x (1) = 6u (1) = 6v3(1) = o ,  6y (1) = - 1, 6z (1) = 2 (32) 3 3 3 3 

and obtain the functions 

As shown in Ref. 1 ,  the  l inear combinations 

6 x = k  6x + k  6x +k36x3 1 1  2 2  

6 y = k  6y + k  6y + k  6y 1 1  2 2  3 3  

6 z = k  6z + k  6z + k  6z 
1 1  2 2  3 3  

6 u = k  6u + k  6u + k  6u 1 1  2 2  3 3  

6 v = k  6v + k  6v + k  6v 
1 1  2 2  3 3  

(34) 

satisfy the differential system (25) and the initial conditions (26- 1)- (26-3) 

provided 

k + k  + k  = 1  (35) 1 2 3  

and the final conditions (26-4)- (26-5) provided 
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If the constants k k k are consistent with (35)-(36), then the linear 

combinations (34) a r e  the desired solutions to (25). Once the perturbation functions 

are known, the approximate trajectory of the system is given by 

1’ 2’ 3 

x = x *  + 6x 

Y = Y, + 6Y 

z = z , + 6 z  

u = u, + 6u 

v = v* + 6v 

and, in this way, the first iteration is completed. Next, the functions x(t), y(t), z(t) 

u(t), v(t) given by Eqs. (37) are employed as the nominal functions for the second 

iteration, and the procedure is repeated. 

Once more, computations were performed with an  IBM 7040 computer. The 

following nominal curve was chosen for the first iteration: I 
I 
I 
1 
I 
I 

2 
X, = 7t - 6t 

y, = 14t - 6 

z, = 14 

2 
U, = t /2 - 2t + 5/2 

v, = t  - 2 

At the terminal points, Eqs . (38) yield 

= 16, u,(2 (3 9) 

and, hence, the boundary conditions (24) a r e  satisfied by the nominal curve. 
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Convergence was rapid. For instance, at station t = 1.5, no change occurred in the 

5th significant figure after four iterations. The results are plotted in Figs. 7- 11, 

which give the nominal functions (38) as well as the functions obtained after the first, 

second, and third iteration. For the functions x(t), y(t), z(t) the curve n = 4 is 

not plotted, since it is extremely close to the curve n = 3 .  Analogously, for the 

functions u(t), v(t), the curve n = 3 is not plotted, since it is extremely close to  the 

curve n = 2. It can be verified that the nonlinear system (23) subject to (24) admits 

the analytical solution 

4 3 2 2 
x = t ,  y = 4 t ,  z = 1 2 t ,  u = l / t ,  v = - l / t  

M 
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I 
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5. Conclusions 

Two mathematical techniques, quasilinearization and the method of particular 

solutions, were combined to solve three nonlinear, two-point boundary-value problems: 

(1) the Blasius equation, (2) the Falkner-Skan equation, and (3) a particular fifth-order 

system. Specifically, the nonlinearity of these problems was removed by quasi- 

linearization, and the resulting linear, two-point boundary-value problem was solved 

by the method of particular solutions employed iteratively. 

Computational results were obained using an If3M 7040 computer. The 

analyses show that the combination of quasilinearization with the method of particular 

solutions can be a powerful tool in solving nonlinear, two-point boundary-value problems. 

Provided the initial guess used in the iteration procedure is chosen with discretion, 

convergence to a solution is quite rapid, and the accuracy of the solution is limited 

only by the integration step size and the integration technique employed. 
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Fig. 2 The function y(t). 
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Fig. 3 The function z(t). 
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Fig. 8 The function y(t). 



48 

36 

2 

24 

12 
1 .o 

1 .r 

A 

1.2 1.4 1.6 1.8 

Fig. 9 The function z(t). 

0.1 

U 

O.( 

0.1. 
1 .o 

2.0 

1.2 1.4 1.6 1.8 
t 

2.0 

Fig. 10 The function u(t). 



-0.25 O r  

V 

1 .o 1.2 1.4 + 1.6 1.8 2.0 

Fig. 11 The function v(t). 


